Гальванически развязанный AC-DC датчик напряжения для АЦП

В продолжение статьи об измерении тока, хотелось бы рассказать и сделать, что ни будь подобное для измерения напряжения. Проблема остаётся все той же, часто возникает необходимость увидеть форму того или иного сигнала, но когда этот сигнал высоковольтный, то не так-то просто это сделать. Во-первых, не у всех измерительных приборов, осциллографов или АЦП, входные каскады рассчитаны на высокие напряжения. А во-вторых, всегда нужно гальванически развязать ваш измерительный прибор и силовую часть схемы.
Итак, начнём с того, что амплитуда напряжение, которое оцифровывает АЦП, намного ниже чем, например 110, 220, 380 вольт. Поэтому необходимо понизить напряжение, приходящее на каналы АЦП. Для этого используем резистивный делитель напряжения.
Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора, подключённые к источнику напряжения. Поскольку резисторы соединены последовательно, то ток через них будет одинаков в соответствии с первым законом Кирхгофа. А падение напряжения на каждом резисторе согласно закону Ома будет пропорционально сопротивлению.

_delitel

Следует обратить внимание, что сопротивление нагрузки делителя напряжения должно быть много больше собственного сопротивления делителя, так, чтобы в расчетах этим сопротивлением, включенным параллельно R1 можно было бы пренебречь. Но оно и не должно быть слишком малым, так как вы будете подключать делитель параллельно основной нагрузке и поэтому, он должен производить наименьшее влияние на нагрузку.
Необходимо подобрать напряжение U1 таким образом, чтобы его можно было оцифровать с помощью АЦП, например, это будет 2,5 вольт.
Думаю, вы согласитесь со мной, что было бы хорошо одним прибором мониторить сигнал любой формы, будь то переменное напряжение или постоянное. Но переменный ток изменяется по синусоидальному закону и имеет отрицательные и положительные полуволны, а так как АЦП контроллера работает от однополярного напряжения, то оцифровать сигнал отрицательной полуволны будет невозможно. Поступим так же как поступили разработчики датчика тока ACS750, сместим ось абсцисс в положительную сторону относительно нуля на 2,5 вольта. Для этого используем операционный усилитель, в качестве инвертирующего усилителя с коэффициентом усиления равным единице. Для этого резисторы R1 и R2 должны быть с одинаковым номиналом, и как уже упоминалось выше, сопротивление нагрузки делителя напряжения должно быть много больше собственного сопротивления делителя, поэтому их номиналы должны быть больше чем номиналы резисторов делителя, например, 1 МОм.

_invertir_usilitel_sosmesheniem

В качестве операционного усилителя можно использовать микросхему LM358, она простая, надёжная и в одном корпусе имеет два операционных усилителя. Подав на прямой вход ОУ +1.25 вольта, мы сместим сигнал Vin на 2,5 вольта относительно оси абсцисс.
Теперь объединим резистивный делитель напряжения и инвертирующий усилитель.

_invertir_usilitel2

Делитель напряжения и операционный усилитель настроены так, что если на вход Vin подать напряжение от -500 до 500 вольт, то на выходе Vout мы получим идентичный сигнал по характеру изменения, но только уже от 2,5 до 5 вольт и от 2,5 до 0 вольт. Именно за счет этого смещения на 2,5 вольта данная схема позволит измерять как постоянное, так и переменное напряжение, то есть сигнал любой формы в диапазоне от -500 до +500 вольт.
Ниже представлена диаграмма напряжения синусоидальной формы, амплитудой 500 вольт , преобразованная данной схемой .

Теперь осталось сделать гальваническую развязку, чтобы со спокойной душой и чистой совестью можно было лезть к высокому напряжению. Для этого можно было бы использовать уже готовые ОУ с опторазвязками, но они или имеют фиксированный коэффициент усиления или не доступны для покупки. Идеальным решением, на мой взгляд, будет использовать оптопару с линейной зависимостью типа IL300. Линейности в ней добиваются за счёт того, что она содержит в себе два одинаковых фотодиода К1 и К2, что видно на рисунке ниже.

IL300

Один фотодиод используется для обратной связи по входу оптопары. Таким образом, используя операционный усилитель, можно регулировать ток светодиода и добиться максимальной линейности. Вот тут мы и используем второй операционный усилитель микросхемы LM358.
На рисунке ниже изображена типичная схема подключения. В качестве входного сигнала для неё будет использоваться выходной сигнал преобразователя рассмотренного выше, Vout.

IL300 T.A.C.

Таким образом, на выходе Vo мы получим сигнал идентичный сигналу на входе Va.
Напомню, что изображенный на первых рисунках усилитель OP1 является инвертирующим, а это значит, что на выходе Vout, самой первой схемы, мы получаем «зеркальное отражение» измеряемого сигнала, это необходимо учесть и исправить. Поэтому завершением всей схемы так же должен стать инвертирующий усилитель с коэффициентом усиления равным единице. Добавим к типичной схеме, изображенной выше, инвертирующий усилитель.
Объединив всё вышеизложенные решения, получим следующую схему.

_IN2

На видео, синим цветом, изображена диаграмма напряжения на выходе Vo, эквивалентная входному напряжению Vin, изображенного красным цветом. В ближайшем времени я обязательно разведу печатную палату и попробую проверить данный девайс на практике. Так же смотрите статьи по программированию MSP430, в которых я расскажу, как работать с данным контроллером и как с его помощью оцифровать подобный аналоговый сигнал.

You may also like...

1 Response

  1. Олег:

    «В ближайшем времени я обязательно разведу печатную палату и попробую проверить данный девайс на практике»
    Не получилось?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>